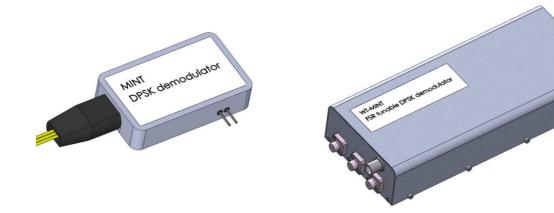


Delay Line Interferometers

MINT and WT-MINT

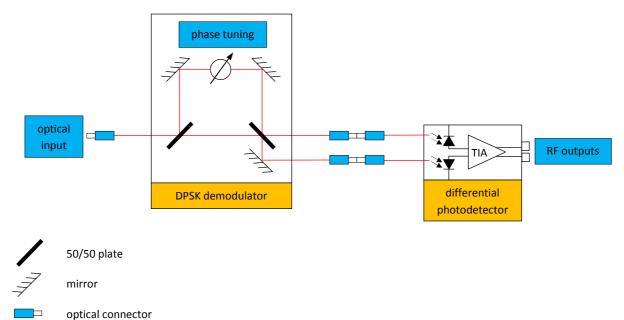
1 – Description	р1
1 – Description 2 – Block diagrams	р2
3 – Absolute maximum ratings	рЗ
4 – Operating conditions	рЗ
5 – MINT specifications	p4
6 – MINT statistic data	р6
7 – WT-MINT specifications	р7
 7 - WT-MINT specifications	р9
9 – ER attenuation option	p11
10 – IL attenuation option	p13
11 – Tunable coupling option	p13
12 – TAP option	p15
13 – Second input option	p15
14 – Wavelength range	p15
15 – Fiber type and connectors	p16
16 – Custom products	p16
17 – Packages layout 18 – Revision	p16
18 – Revision	p17

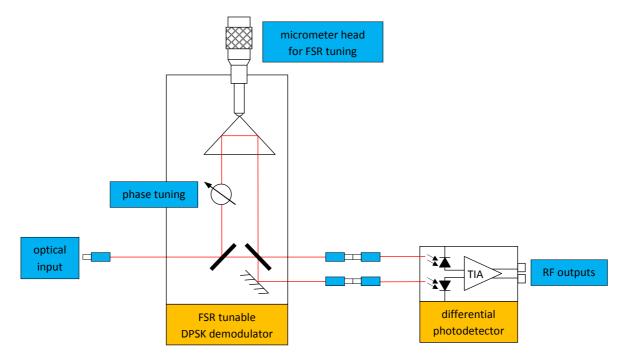

1 – Description

The Micro Interferometer (MINT) is a Delay Line Interferometer (DLI) that performs the interference between an incoming signal and itself delayed by one bit-time. Dedicated to D(Q)PSK demodulation it can be used in many other applications. MINT is tunable to enable a precise matching of the carrier frequency. Two phase tuning options are available: the ultra-fast option (U), which exhibits very low tuning time constant (20µs), and the low voltage option (L), which needs only 3V to reach the tuning range.

The WT-MINT is a Widely Tunable MINT that enables to set the delay of the interferometer to the desired value. This can be done either with a micrometer head (manual option) or with a motorized translation stage (piloted version). In both case U and L option are available to precisely match the carrier frequency. There are three ranges of WT-MINT:

- WT-MINT 100ps: it enables to set an optical delay range of 100ps (corresponding to a Free Spectral Range of 10GHz to infinite, or – for instance – 5GHz to 10GHz). Available with manual or piloted option.
- WT-MINT 300ps: it enables to set an optical delay range of 300ps (corresponding to a Free Spectral Range of 3.3GHz to infinite, or 2.5GHz to 10GHz). Available with manual or piloted option.
- WT-MINT 3000ps: it enables to set an optical delay range of 3000ps (corresponding to a Free Spectral Range of 0.33GHz to infinite). Available with piloted option only.


MINT and WT-MINT products are also available with PM fibers.


MINT packaging

WT-MINT packaging

2 – Block diagrams

Block diagram: MINT

Block diagram: WT-MINT

The incoming signal is split in two parts. One is delayed regarding the other and then both are recombined on two outputs where they interfere one with each other. Both outputs are phase shifted by 180° and thus can be plugged to balanced or differential photodiodes that will convert a phase modulation into an amplitude modulation.

The delay between both arms of the interferometer should be equal to the time-bit (T_{bit}) of the incoming signal. Then the interferometer is characterized by its Free Spectral Range (FSR) which is linked to T_{bit} by the relation FSR=1/ T_{bit} .

3 – Absolute maximum ratings

Parameter		Symbol	Min	Тур.	Max	Unit	Remarks/Conditions
Maximal optical input pow	Maximal optical input power				300	mW	
Storage temperature	MINT	STR	-40		80	°C	
range	WT-MINT		-10		40		
Humidity	Humidity		5		85	%	Non condensing
Fiber bend radius	Fiber bend radius		20			mm	
Maximum input voltage		N			100		
Maximum input voltage	L option	V _{max}			4		

4 – Operating conditions

Parameter		Symbol	Min	Тур.	Max	Unit	Remarks/Conditions
Operating wavelength		OWR	1520		1570	nm	
Operating temperature	MINT	OTR	0		70	°C	
range	WT-MINT	UIK	10		35	Ľ	

5 – MINT specifications

	MINT, FSR > 2.5GHz							
Parameter			Symbol	Min	Тур.	Max	Unit	Remarks/Conditions
Free Spectral Range	e ¹		FSR	2.5			GHz	Any FSR > 2.5GHz can be provided
FSR accuracy ¹			ΔFSR			1	%FSR	
Insertion Losses ¹			IL			2.0	dB	
IL uniformity ¹			ΔIL			0.5	dB	
Polarization Depen	dant Lo	osses ^{1,2}	PDL			0.3	dB	
Polarization Depen	dant	FSR>10GHz	DDEC			2.0	0/ 50 0	
Frequency Shift ^{1,2}		FSR<10GHz	PDFS			4.0	%FSR	
Extinction Ratio ¹		1	ER	18			dB	
Polarization Extinct	ion Rat	io ^{1,3}	PER	20	25		dB	
Temperature Deper	ndant	L	TDEC			10	0/500	
Frequency Shift		U	TDFS			50	%FSR	
Tuning range					1.5	FSR		
		L	- V			3	v	Voltage needed to reach
Tuning voltage	ing voltage				75	90		the tuning range
Tuning time constant L U		L	_			1.0	S	To reach 50% of the fina
		U	- τ			0.02	ms	state
Device constinu		L	Р			0.5	W	
Power consumption	n	U	P			0.001		
Polarization Mode	Dispers	ion	PMD			0.1	ps	
Chromatic Dispersion	on		CD			1	ps/nm	
Optical Return Loss	i		ORL	35			dB	
Skew					0.5	1.0	ps	
	$FSR \ge 2$	0GHz		4	4 x 26 x 9	9.5		
	raging size ⁴ FSR < 20 GHz or PM fiber, any FSR			100 x 55 x 16			mm ³	
Phase tuning conne	ector			0.1 ir	nch PIN h	eader		
		SM			SMF-28			With 000 up loose to be
Fiber Pigtail Type		PM		F	PANDA P	М	1	With 900µm loose tube
Fiber Pigtail Length				0.9	1.0	1.1	m	

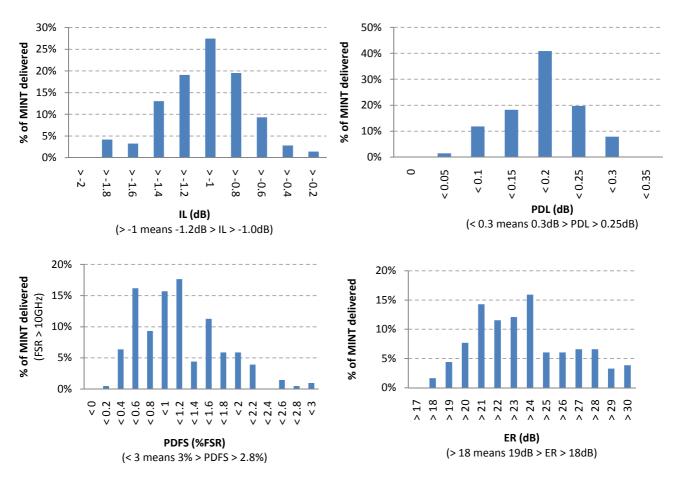
 $^{\rm 1}$ measured over OTR and OWR for all states of polarization $^{\rm 2}$ for Single Mode MINT

³ for Polarization Maintaining MINT

⁴ excluding fiber boot

	MINT, FSR < 2.5GHz						
Parameter		Symbol	Min	Тур.	Max	Unit	Remarks/Conditions
Free Spectral Range ¹		FSR	0.4		2.5	GHz	Any FSR between 400MHz and 2.5GHz can be provided.
FSR accuracy ¹		ΔFSR			5	%FSR	
Insertion Losses on shor	t arm ¹	IL1			9.0	dB	Including 6dB of natural
Insertion Losses on long		IL2			9.0	dB	losses due to beamsplitter
Polarization Extinction R	atio ^{1,3}	PER	20	25		dB	
Tuning range					1.5	FSR	
Tuning voltage	L U	V		75	3 90	V	Voltage needed to reach the tuning range
	L				1.0	S	To reach 50% of the final
Tuning time constant	U	τ			0.02	ms	state
Power consumption	L U	P			0.5	W	
Polarization Mode Dispe	ersion	PMD			0.1	ps	
Chromatic Dispersion		CD			1	ps/nm	
Optical Return Loss		ORL	35			dB	
Skew				0.5	1.0	ps	
Packaging size ⁴			13	0 x 65 x 3	19.5	mm ³	
Phase tuning connector			0.1 ir	nch PIN h	neader		
Fiber Pigtail Type	SM PM		SMF-28 PANDA PM			-	With 900µm loose tube
Fiber Pigtail Length			0.9	1.0	1.1	m	

¹ measured over OTR and OWR for all states of polarization


² for Single Mode MINT

³ for Polarization Maintaining MINT

⁴ excluding fiber boot

6 - MINT statistic data

Here are the statistic data of our MINT delivered between January 2009 and March 2013 (any FSR from 2.5Hz to 100GHz, any phase tuning option).

For PDFS and ER, we do not observe Gaussian repartition because these parameters depend on the FSR (larger is the FSR, better are PDFS and ER).

7 – WT-MINT specifications

The 100ps WT-MINT allows a tunable FSR from 10GHz to infinite.

		W	Γ-MINT, 10	Ops Op	tical De	lay Rang	e	
Param	eter		Symbol	Min	Тур.	Max	Unit	Remarks/Conditions
Optica	l Delay Range		ODR	100			ps	
Manua	al WT-MINT ODR s	ensitivity				8	fs	
₽ ∟	Minimum increr	nental motion				2	fs	
Motorized WT-MINT	Relative accurac	ý				75	fs	
Motorized WT-MINT	Unidirectional re	epeatability				15	fs	
∑ ≥	Bidirectional rep	oeatability				20	fs	
	on Losses ¹		IL			2.5	dB	
IL unif	ormity ¹		ΔIL			0.5	dB	
Polariz	ation Dependant	Losses ^{1,2}	PDL			0.5	dB	
Polarization Dependant Frequency Shift ^{1,2}		PDFS			3.0	%FSR		
Extinction Ratio ¹		ER	18			dB		
Polarization Extinction Ratio ^{1,3}		PER	20	25		dB		
Tuning range					1.5	FSR		
Tuning	, voltage	L	V			3	V	Voltage needed to reach
runng	voltage	U	- V		75	90		the tuning range
Tuning	; time constant	L	- τ			1.0	S	To reach 50% of the final
runng		U	L L			0.02	ms	state
Dowor	consumption	L	P			0.5	W	
rowei	consumption	U				0.001		
Polariz	ation Mode Dispe	rsion	PMD			0.1	ps	
Chrom	atic Dispersion		CD			1	ps/nm	
Optical Return Loss		ORL	35			dB		
Skew				0.5	1.0	ps		
Packag	ging size ⁴			2:	16 x 92 x	40	mm ³	
Phase	tuning connector				BNC			
Fibor 5		SM			SMF-28			
FIDER P	Pigtail Type	PM	1	F	PANDA P	M	1	

¹ measured over ODR, OTR and OWR for all states of polarization

² for Single Mode WT-MINT

³ for Polarization Maintaining WT-MINT

⁴ excluding micrometer head or piloted actuator

		W	r-MINT, 30	Ops Op	tical Del	ay Rang	e	
Parameter			Symbol	Min	Тур.	Max	Unit	Remarks/Conditions
Optica	l Delay Range		ODR	300			ps	
Manua	al WT-MINT ODR s	ensitivity				15	fs	
v ⊢	Minimum incren	nental motion				3	fs	
Motorized WT-MINT	Relative accurac	y				150	fs	
loto /T-N	Unidirectional re	peatability				30	fs	
	Bidirectional rep	eatability				40	fs	
Inserti	on Losses ¹		IL			4.0	dB	
	ormity ¹		ΔIL			1.0	dB	
Polariz	ation Dependant I	osses ^{1,2}	PDL			0.8	dB	
	Polarization Dependant Frequency Shift ^{1,2}		PDFS			5.0	%FSR	
	Extinction Ratio ¹		ER	15			dB	
Polariz	ation Extinction R	atio ^{1,3}	PER	20			dB	
Tuning	g range					1.5	FSR	
Tuning	Tuning voltage	L	v			3	v	Voltage needed to reach
Turning	s voitage	U			75	90		the tuning range
Tuning	g time constant	L	-			1.0	S	To reach 50% of the final
TUTITIE		U	τ			0.02	ms	state
Dowor	concumption	L	Р			0.5	W	
Power	consumption U		P			0.001	vv	
Polariz	ation Mode Dispe	rsion	PMD			0.1	ps	
Chrom	Chromatic Dispersion		CD			1	ps/nm	
Optica	Optical Return Loss		ORL	35			dB	
Skew	Skew				0.5	1.0	ps	
Packa	ging size ⁴			2:	16 x 92 x	40	mm ³	
Phase	tuning connector			BNC				
Fiber		SM			SMF-28			
Fiber F	Pigtail Type	PM		F	PANDA P	М		

The 300ps WT-MINT allows a tunable FSR from 3.3GHz to infinite or 2.5GHz to 10GHz.

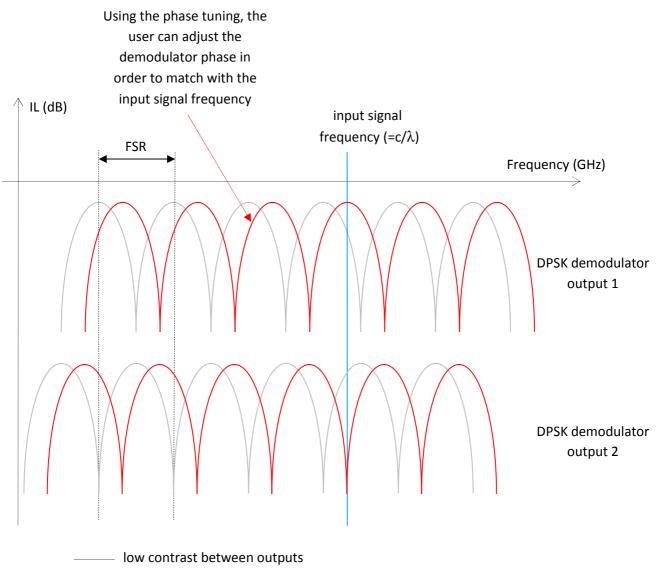
¹ measured over ODR, OTR and OWR for all states of polarization

² for Single Mode WT-MINT

³ for Polarization Maintaining WT-MINT

⁴ excluding micrometer head or piloted actuator

WT-MINT, 3ns Optical Delay Range							
Parameter		Symbol	Min	Тур.	Max	Unit	Remarks/Conditions
Optical Delay Range		ODR	3000			ps	
Minimum incremental m	otion				10	fs	
Relative accuracy					250	fs	
Unidirectional repeatabil	ity				30	fs	
Bidirectional repeatabilit	у				150	fs	
Insertion Losses on short	arm ¹	IL1			9.0	dB	Including 6dB of natural
Insertion Losses on long	arm ¹	IL2			9.0	dB	losses due to beamsplitter
Polarization Extinction Ra	atio ^{1,2}	PER	20	25		dB	
Tuning range					1.5	FSR	
Tuning voltage	L	V			3	V	Voltage needed to reach
Tuning voltage	U	V		75	90		the tuning range
Tuning time, constant	L	_			1.0	S	To reach 50% of the final
Tuning time constant	U	τ			0.02	ms	state
Dower consumption	L	Р			0.5	w	
Power consumption	U				0.001	vv	
Polarization Mode Disper	rsion	PMD			0.1	ps	
Chromatic Dispersion		CD			1	ps/nm	
Optical Return Loss	Optical Return Loss		35			dB	
Skew				0.5	1.0	ps	
Packaging size	Packaging size		2U 19-inches rack				
Phase tuning connector				BNC			
Fihan Distail Tura	SM			SMF-28			
Fiber Pigtail Type	PM		P	ANDA P	Μ	1	


The 3ns WT-MINT allows a tunable FSR from 0.33GHz to infinite.

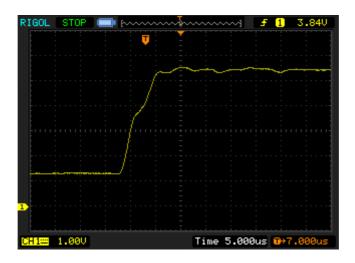
¹ measured over ODA, OTR and OWR for all states of polarization

² for Polarization Maintaining WT-MINT

8 – Phase tuning options

For DPSK demodulation, the phase tuning is essential in order to control the contrast between both outputs of the interferometer/demodulator.

— high contrast between outputs thanks to phase tuning


The FSR variation is not significant (and can be considered as invariant) when the user adjust the phase of the demodulator/interferometer.

KYLIA proposes for all its DPSK demodulators (MINT and WT-MINT) two different phase tuning options:

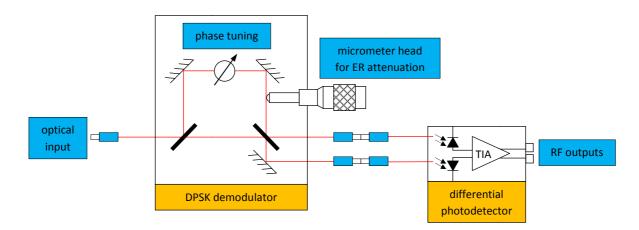
U option: Ultra-fast response based on a piezo actuator.

This option is helpful for fast shifting systems (instability of the laser for instance). The DLI can adapt itself instantaneously to the environment, if a closed loop between BER and phase shifting is set up. This solution is mainly used in labs.

With this option, the user can accomplish a shift of one FSR by applying a 60V voltage. The tuning time is better than 20μ s.

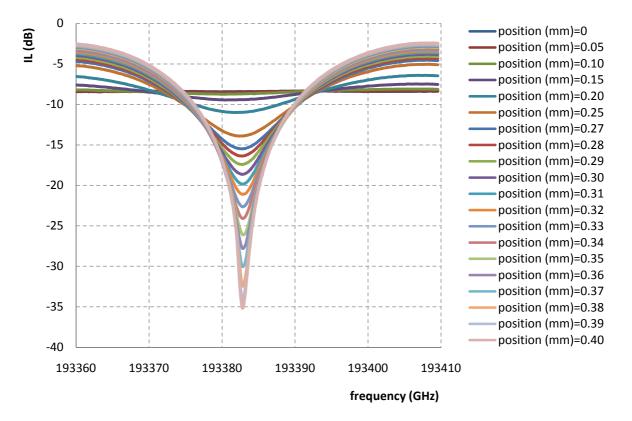
Tuning speed for a U option DPSK demodulator

Low-voltage tuning based on a resistive heater

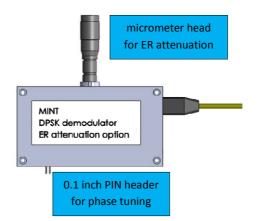

Phase shift is obtained using a resistive heater fixed on an optical element. Changing the voltage changes the local temperature and thus the optical index, then the optical delay.

With this option, the user can accomplish a shift of one FSR by applying a 2V voltage. The tuning time is better than 1s.

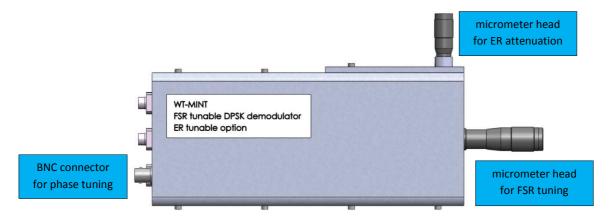
9 – ER attenuation option


It is possible to tune the extinction ratio of an interferometer by adjusting the power in both arms. When the power is the same the ER will be the greatest. By attenuating the power in one arm, ER will be reduced.

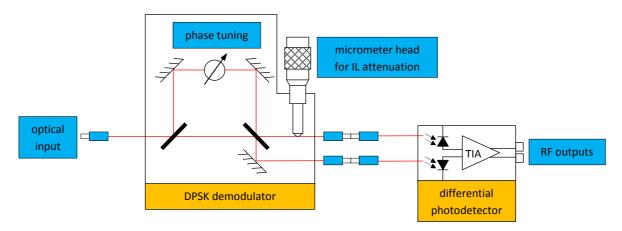
The ER attenuation option for MINT and WT-MINT consist of a micrometer head that can adjust the power of one arm of the interferometer. It enables to tune the ER down to 0dB (one arm is totally shut down) with an accuracy of 1dB.



Block diagram: DLI with ER attenuation option

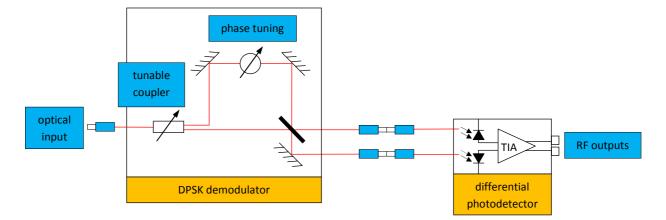

On the following graph, we show the variation of the spectral response of our DLI by attenuating the optical beam for one arm of the interferometer.

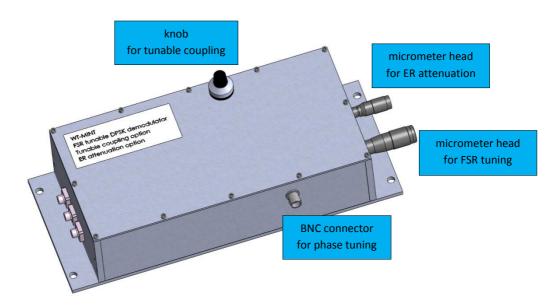
MINT spectral response with ER attenuation


MINT with ER attenuation option

WT-MINT with ER attenuation option

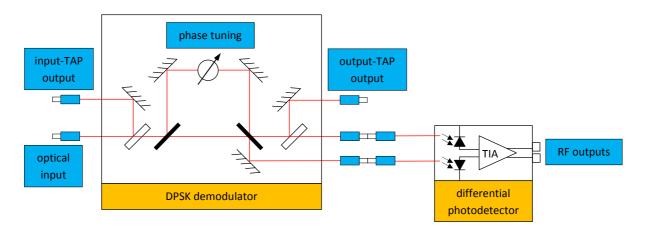
10 – IL attenuation option


IL attenuation enables to increase the IL on each output individually. This can be done thanks to a micrometer head. The attenuation can be total (no power exits from the output) and adjusted with an accuracy of 0.1dB.


Block diagram: DLI with IL attenuation option

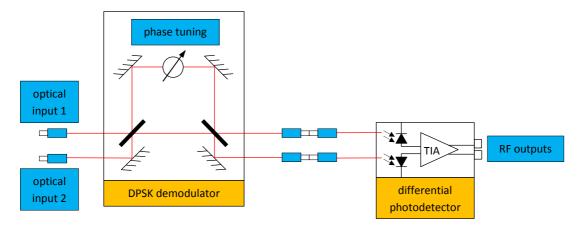
11 – Tunable coupling option

This option is available for PM MINT or PM WT-MINT only. It enables to adjust the splitting ratio of the interferometer (which is 50/50 for standard interferometers) from 100/0 to 0/100. This can be very useful if a precise 50/50 ratio is needed.


Block diagram: DLI with tunable coupling option

WT-MINT PM with tunable coupling and ER attenuation options

12 – TAP option


Thanks to the flexibility of our technology, we can propose to add optical TAP outputs in our products. The TAP ratio can be 4% or 50%.

Block diagram: MINT with TAP option for input and output signals

13 – Second input option

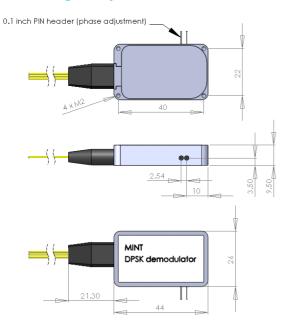
A second input can also be added in our product.

Block diagram: MINT with a second optical input

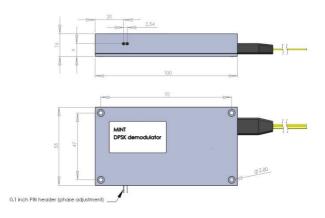
14 – Wavelength range

MINT and WT-MINT can be proposed at different wavelength range, from the visible to the IR 800nm, 1064nm, 1300nm...). The device will be operational on a wavelength range of a tens of nanometers centered on the wavelength required by customer.

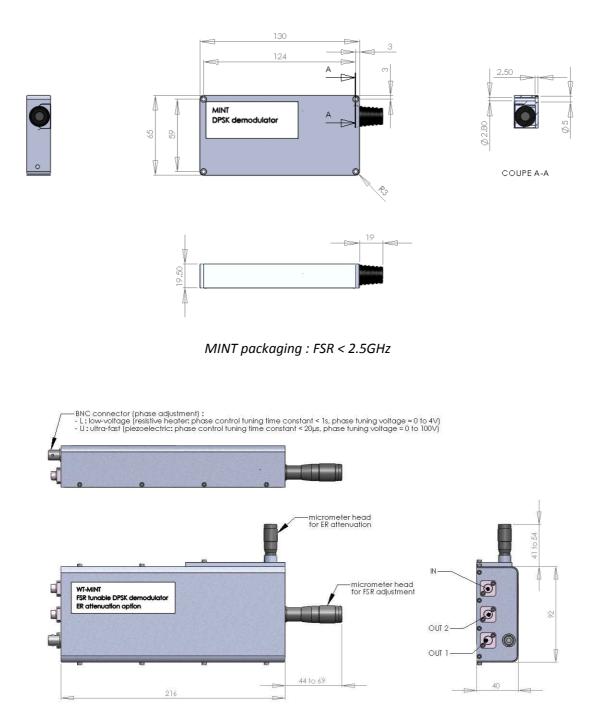
15 – Fiber type and connectors


Every MINT or WT-MINT can be proposed either with SM or PM fibers.

The devices can be proposed with any kind of connectors (FP/UPC, FC/APC, SC/PC, SC/APC, LC/PC, E2000/PC, E2000/APC, etc...).


16 – Custom products

Thanks to our free-space technology we can easily customize most of our products and so it is for the MINT and WT-MINT. Customer can feel free to ask for any customization they need. We will examine the request and do our best to have a positive answer.


17 – Packages layout

MINT packaging : FSR > 20GHz

MINT packaging : FSR > 2.5GHz

WT-MINT packaging (with ER attenuation option)

18 – Revision

date	version	Object
March 21, 2013	MINT V1.0	Creation
May 15, 2014	MINT V1.1	Phase tuning option explanation
		MINT packaging for FSR < 2.5GHz